
I7- r
' h ?@A

J
MC R-70-327

DEVELOPMENT OF A KSC TEST AND
ENGINEERING ORIENTED COMPUTER
LANGUAGE - PHASE I REPORT

C. W. Case
E. L. Kinney
J. Gyure

FLIGHT-

zy 18 M

Martin Marietta Corporation
Denver Division
Box 179, Denver, Colorado. 80201

August 1970

Interim Reportfor Period July-August 1970

Prepared for
National Aeronautics and Space Administration
John F. Kennedy Space Center

..

;(NASA-CH-1 2 5 2 6 0) DEVgLOPSPNN'I OF A KSC TEST
AND ELIGHT ENGINEERING OlIENTLD COMPUTEA

LANGUAGE, PHASE 1 Interim Report, Jul. -

Auq. 1970 C.W. Case, et al (ilartin

\Parietta Corp.) .Auq. 1970 7. p CSCL 09B G3/08
I

N72-15169

Unclas
12744

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

\ 'I
,I\~1

I , .

V J

I

.- b; s6l o 9

r .. ,l

I

N 0 T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM

THE BEST COPY FURNISHED US BY THE SPONSOR-

ING AGENCY. ALTHOUGH IT IS RECOGNIZED

THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT

IS BEING RELEASED IN THE INTEREST OF MAK-

ING AVAILABLE AS MUCH INFORMATION AS

POSSIBLE.

PREFACE

This report contains the results of the Phase I effort of
the Development of a KSC Test and Flight Engineer Oriented
Computer Language Study. This'Phase I effort was directed at
the examination of existing related languages and their appli-
cations./

Three languages, ATOLL, ATLAS and CLASP were examined in
detail and their characteristics are documented in a language
characteristics table. A general review of several other test
oriented languages was undertaken. Information on ATOLL II,
MOLTOL, CTL, VTL, TOOL, ADAP, and ASEP is included in this re-
port. Some general comments on other higher order languages not
related to testing is also included.

A description of the ATLAS compiler developed
Company is included in the appendix.

at the Martin

ii

, K * W.-1

CONTENTS

Inroducion.
Introduction
Language Discussions
A. ATOLL
B. ATLAS
C. CLASP
D. ATOLL II
E. MOLTOL
F. CTL
G. VTL
H. TOOL
I. ADAP
J. ASEP
K. Other Languages
Language Characteristics Comparison .
Deficiencies and Problems of Existing
Languages

Safeguards and Checking Provisions
Programming and Reading Aids
Conclusions . . .
Definitions
Bibliography
-- An ATLAS Computer

. ii

* iii

3
4
6

. . . . 81

· 9

11. 11

~..... 15
..... 18

. 19
.,... 21

... 23
· . , i * 25

~..... 53
*55

. .. . 57
. 61

.... 63
67

. 69
thru
72

.J

iii

Preface
Contents
I.
II.

III.
IV.

V.
VI.
VII.
VIII.
IX.
AppendixKI

E ;

I. INTRODUCTION

This report covers the Phase I study task of the Development of a KSC
Test and Flight Engineer Oriented Computer Language.

This task included the study of numerous languages that might provide
useful guidance and/or features for the development of the new language.
In addition, the study of existing language applications have provided
background and understanding of the role that a test-oriented language
plays in the acceptance and implementation of automation. Other results
of the Phase I study include a greater appreciation of the degree to which
test system characteristics and limitations have resulted in the specialization
of "test-oriented" languages, the degree to which test system characteristics
have dictated test philosophy, and the evolution of test system oriented
programmers from both test engineers and professional programmers.

The comparison matrix, Table 1, lists characteristics of three of the
languages studied, and some particularly pertinent features of other languages.
The CLASP language, while not test oriented, will most probably be a companion
language used in the origination of flight computer programs for space vehicles,
particularly in the areas of guidance and navigation. It would, therefore,
seem desirable to promote commonality between CLASP and the new language
wherever practical. More space program related test programs (in terms of
implemented test statements) have been written in the ATOLL language than
any other "test-oriented" language. It might, therefore, be expected to
contribute to the new language. The ATLAS language is rapidly receiving world-
wide acceptance for avionics and other unit testing, and many compilers are in
various stages of design. ATLAS is particularly English-like, strictly test-
procedure oriented, and test system independent. It might well contribute
significantly to the new language.

Several of the other languages studied have commonalities with the above
three languages and with each other.

The next two study Phases will select characteristics desired for the
new language and prepare a language specification.

1

PRECEDING PAGE BLANK NOT FILMED

II. LANGUAGE DISCUSSIONS

This section contains brief descriptions and discussions of each
of the languages studied. An attempt has been made to provide background
information leading to the language definitions as well as some seneeal
conclusions relating to the impact that the language has had on the
program(s) using it. Unfortunately, there was not time to study all test
languages in use throughout the country. It is believed, however, that
many features of the languages studied were based on studies of still other
languages; as a result, these languages actually represent a imuch larger
basis for study than might be immediately apparent.

I . i

;

!

*' i
:' ; '

: ' ' +.... . .

. . . .

.: : I ,
. , .

.

. . .

3

II. A. ATOLL

Acceptance, Test, Or Launch Language (ATOLL) was developed early in
the Saturn development of automatic checkout. Initial RCA-110 computer
program development highlighted the necessity for a language which would
proviQd A move diraoe path from the test engineer, writing test procedures,
and the computer object program which would provide for the conducting of
Saturn tests. A specification for such a language was released in 1963.

The objectives of.the language were to:

1) provide a language to be used in testing the Saturn stages
completely independent of the checkout equipment or location;

2) provide a language which would enable a test oriented engineer
to write the test programs necessary to test his subsystem
without a large training effort;

3) provide a language whose resulting test programs would
satisfy other documentation needs such as (a) detailed
test procedure, (b) serve as a test program for input
to the automatic checkout and launch test system, (c)
provide for test review and evaluation by project and
quality personnel, (d) provide a checklist for verifying
contractor test performance;

4) provide a language format which is easy to learn and close
enough to test nomenclature to be easily taught and used;

5) provide flexibility of expressing simple test functions
and grouping of these into more complex routines describing
a test procedure;

6) provide for ease of making changes.

ATOLL falls short of meeting all of the objectives originally proposed.
The use of mnemonics and abbreviations is common. The majority of
abbreviations are logical and easily remembered. However, many of these have
variations in the statement format which cause them to lose their identify.
Some abbreviations are programmer oriented and not test engineer vernacular.
Others are strictly checkout equipment oriented and lose their ease of
remembering on the part of the systems test engineer. Test article functions
have terms applied which must be referred to in a table for understanding.
Comment cards are used to provide understanding but are not interpreted by
the ATOLL compiler and thus do not insure that the action requested is
identical to the comment message. Had the ATOLL met all objectives proposed,
the test statement would have included the comment information and would have
been interpreted by the compiler, resulting in a one-for-one relationship.

4

,I.

II. A. ATOLL (Continued)

All programmer oriented terms and checkout specific terms would have
been replaced with terms familiar to the test engineer. Examples of
programmer oriented operators are SETX, INCX, SFLG, TFLG, MSFG, MISG,
SFIT, CODE, BLOK, EXEC, BEGN, RETN, MISR, CALL DEOL, EXEM, EWD, GOTO,
PROB, PROC, PREM.

Examples of test equipment oriented terms are DISA, DISO' SSEL,
MDSO, MNTR, TERM, DMON, DPLY, DFPYM, SEMI, DFLG, RGMT and RCDC,

Examples of test oriented terms which imply functions which a test
engineer may accept in lieu of more familiar tems are RECD, READ, DELY,
TEST, and SCAN.

The increased number of ATOLL programs over the last five years
indicates a willingness to attempt automatic testing. This can partially
be credited to ATOLL by providing a tool which more adequately provides
an interface between the test engineer and the checkout equipment. The
number of switch positions on the subsystem consoles implies that manual
capability and desire preceded the present use of automatic checkout. ATOLL
has provided a capability for test engineers to communicate with the program.
Training of test engineers to the level of competence necessary;has been quoted
in the neighborhood of 40 hours instruction and a few months of on-the-job
applying the language to be fully competent.

As pointed out in other reports, a shortcoming of ATOLL is lack of
provision for arithmetic operations. This has resulted in the need for
many machine language programs and subroutines. All readability is lost
whenever the machine language programs are executed. This factor violates
the objectives originally established for ATOLL toward providing ease of
verifying contractor test procedures, test review, and quality acceptance
in addition to providing a capability for the test engineer to write his
own test procedures. A programmer must communicate with the test engineer
to insure his procedures are being implemented correctly into machine
language test programs.

From the initiation of the early ATOLL programs until the present time
(5 years?) a gradual cross pollination has taken place between test engineers
and professional programmers. The test engineers have, through training and
use, come to accept ATOLL, and the increasing number of programs utilized
today, attests to its acceptance. On the other hand, programmers assigned
to the Saturn program have become familiar with the checkout equipment and
the Saturn vehicle requirements. The programmer side of the house feels
that indeed the ATOLL is an English-readable test oriented language. The
test engineers feel that while it is useful, the terms employed and the
formats are not test oriented; that to fully understand what is going on
requires more study than they are willing or able to commit in addition to
looking up too many checkout equipment/vehicle terms to verify that the
correct vehicle function has been addressed. In addition, more continuous
monitoring capability and an arithmetic capability is desired.

,e

II. B. ATLAS

The Abbreviated Test Language for Avionics Systems (ATLAS) was originated
and is maintained by a fluctuating group of knowledgeable personnel from many
organizations, including airlines engineering and maintenance organizations,
software design organizations, avionics manufacturers, aircraft manufacturers,

and automatic test equipment manufacturers. Both domestic and foreign firms
are represented. The military services have also participated. The sponsor

of the group is the ATE Subcommittee of the Airlines Electronic Engineering
Committee. AEEC performs the general function of generating and promoting
standardization of avionics and related systems for use by commercial airlines,
The ATE Subcommittee's charter is to promote standardization in the area of
Automatic Test Equipment.

An early conclusion of the subcommittee was that the major source of

automation difficulty was the lack of precise, test equipment independent

test procedures that could be used as a basis for generating automatic test
equipment program3. Consequently, the subcommittee directed its full attention

to the specification of ATLAS, with the intent that all future overhaul and

test manuals for avionics procured by the airlines must contain test procedures

written in the
9
ATIS language. The ATLAS specification was released

June 1, 1969, ' and the implementation of the language is well underway.

Since current avionics units used by airlines do not have vendor supplied ATLAS

test procedures, the ATE manufacturers and airlines using ATE are at present

the major writers of ATLAS Test Programs. Eventually, they will become the

readers and users of the vendor prepared test programs.

ATLAS is by far the most readable, English-like, test-oriented language

of all the languages studied, It purposely attempts to avoid any test system

or test equipment orientation so that the airlines might exercise greater

lattitude in selecting and procuring their ATE. The language concentrates on

the specification, checking and timing of interfaces with the Unit Under Test
(UUT). Some general characteristics of the ATE are assumed, however, as

illustrated by PRINT, DISPLAY, RECORD and other statements. Test system

capability to provide all specified interfaces is also assumed.

In view of the relatively short time since the ATLAS specification was

released, it has received remarkable acceptance, most probably due to its

readability. Jacobi Systems Corp. profitably conducts training seminars

several times a year. The British Ministry of Technology has endorsed ATLAS

for technical school courses. The Navy has contracted for a compiler for an

ATLAS-derivitive for use with the VAST system. Other non-airline applications

are increasing. The ATE Subcommittee and many of its members are swamped

with requests for changes, additions, and clarifications from diverse sources.

Response to ATLAS is not all positive, particularly for non-airline

applications. Some necessary specification changes approved by the subcommittee

over a year ago have not yet been released. ATLAS compilers are expensive and

require considerable computer memory. Interfaces between an ATE operator or

test conductor and the ATE cannot easily be defined because the language is

independent of the ATE (most ATLAS-based variations are a result of this

characteristic). The general philosophy of avoiding abbreviations is disagreeable

6

II. B. ATLAS (Continued)

to test writers, particularly with primitives such as MEASUREMENT, IMPEDANCE,
and TRIANGULAR WAVE SIGNAL. Due to its UUT interface orientation, it is not
readily adaptable when the test system or UUT interfaces are not totally under
ATLAS program control (as might be the case with an intervening data acquisition
system). Provisions for non-UUT interfaces are non-existant.

In general, ATLAS may indeed provide a basis for a new aerospace systems
test-oriented language, but not without major modification.

. .
*4.

I
;I.

, .

, .

.; , ' "
,

. ,

.

s

. . ..

;

. ,

7; i

I
i

II. C. CLASP

The Computer Language for Aeronautics and Space Programming (CLASP)
developed as a result of a study undertaken for the NASA Electronic Research
Center by Logicon, Inc.2 This study compared the Space Programming Language
(SPL) developed as a result of a study carried out by System Development
Corporation 4 and PL/1 for use in the development of real-time aerospace
programs for NASA.

As a result of this study, it was determined that a number of deficiencies
existed in both SPL and PL/l with regard to. the application NASA specified. A
new language, CLASP, was proposed which was based on SPL. Further development
of SPL has resulted in making CLASP a subset of the more general SPL. CLASP
is now identical with the SPL/MARI I subset.

SPL and its subsets, including CLASP, have been designed specifically to
assist in the writing of programs in the aerospace field. The software
requirements of this application area are at present somewhat restrictive
due to the nature of present day aerospace computers. However, future soft-
ware requirements are tending toward increased complexity and sophistication as
new hardware with more capabilities becomes available. The requirement of a
higher order language for this application area arises because of these develop-
ments.

CLASP was designed using ground rules which require the language to be
of immediate and practical use with aerosapce computers of the present and
near future. This requirement resulted in a language oriented to arithmetic
and logical manipulations with primary emphasis on the solution of guidance
and navigation problems.

CLASP is a procedure-oriented language for use by a professional programmer.
Due to the many computer dependent features included in the language, a detailed
knowledge of the target computer is required.

CLASP has several of what are considered by its designers to be unique
features with respect to other higher order languages. Extensive fixed point
capabilities with respect to scaling control are provided. A capability exists
for scaling control over intermediate results of arithmetic operations.
Temporary variables can be declared which take on changing attributes depending
on usage. Optimization compiler directives exist which provide modifiable
degrees of optimization with respect to both space usage and execution time.

CLASP compilers are currently under development and the language is still
evolving. The CASLP language, as presently defined, is not suitable for direct
use in a test-oriented environment.

8

II. D. ATOLL - II

ATOLL-II was developed under contract by General Electric Company as an
alternative or replacement for ATOLL for use in Saturn checkout. It was
never implemented, buta reference manual 13 and compiler were prepared.

The language is based on Fortran with the addition of real-time test-
oriented and Saturn ESE oriented statements. It is more English-like than
ATOLL with terms such as TURN ON, TURN OFF, WAIT and a few others. Some
other statements and terms are more specifically programmer-oriented (DO, PROC,
INCORP, DECL). It is not particularly test-engineer oriented in much of its
vozabulary. It does include capability to initiate, synchronize and terminate
parallel programs, including continuous monitoring, either in a single or dual
computer configuration. It also includes arithmetic capabilities that were
not implemented in ATOLL.

Declaration and assignment capabilities are extensive and would require a
significant amount of training for most test engineers.

The format of statements includes fixed card column fields for Control,
Time, Label, and Statement; however, these may be reassigned at any place in
the program by a Card Fqrmat declarative.

A general observation is that ATOLL-II includes many capabilities which
would be seldom used, but would require significant user training and retraining
for continued proficiency by engineers whose principle function is not
programming.

.

:· ·· i

. . . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

9

II. E. MOLTOL

MOLTOL, Manned Orbiting Laboratory Test Oriented Language, was designed
under contract to the Air Force for use in the checkout of the Manned Orbiting
Laboratory. It was never implemented due to MOL program cancellation. A
MXLToI Tp we iteris heateence Manual, 4; was prepared, and has some areas of
incompleteness. MOLTOL almost totally includes ATOLL-II and the discussion
of ATOLL-II is applicable. A few significant additions are discussed heein.

All test statements are assumed to be executed with a fixed time interval
spacing. Language statements are included to control these execution intervals.

Communications with an on-board computer are accommodated with a DISPATCH
statement.

Definition of alternate terms which can be substituted for language
primitives is allowed with a statement such as:

DEFINE END AS FINISH

or

DEFINE MONITOR AS NONSENSE

(This capability has obvious ramifications')

- , .

- ! '

\. ;
. 2

I

. . ' I

,

., . - ' ! '

. .

S I .

.

.

10 .,

I .

; . .

I .. I

: . .-

: . ;'

. ..i

.

:

I

W' ..

II. F. CTL

The Computer Aerospace Ground Equipment Test Language (CTL) was
developed to provide a near English test oriented language for use
with the Titan IIIC/MOL checkout equipment. The development of this
language emphasized the role of the tout onginaQr in oxproaeing command,
a"id criteria to the test article completely, simply and unambiguously. The
role of the customer, reviewer and user was considered and made it imperative
that the format be readily understood by all.

Terms were selected which supposedly were familiar to the test engineer
and which would be readily translated to machine instructions. Diagnostics
played an important part in providing safeguards against illegal or hazardous
operations while not restricting the test engineer's flexibility.

A second objective of the CTL was to reduce the writing burden of the
test engineer by providing sequence preparation aids. These aids enabled
the writer to abbreviate his tests in such a form that the translator
could expand the statements into fully defined lists that could be easily
understood and reviewed by all interested parties. The CTL/Translator ratio
amounted to a 20/1 expansion for a typical test sequence. Each CTL statement
required about four computer words after translation which provided a reduction

in writing by the test engineer of one CTL statement to 80 machine language
statements.

One set of resident programs are used for all test sequences, variations
being accomplished by the order of the test language statements and differences
in the statement modifiers. With this complete set of programs new or modified
sequences requires no additional programming. The sequence which is described
by a string of data, is a subset of instructions plus data that would be
required for an assembly language or compiler description of the test. The
translator provides for efficient packing and conversion of the language state-
ments which permits a reduction of 1/3 to 1/10 in memory space requirements.

The importance of an interpretive language is summarized below:

1) test techniques and requirements are not generally under-
stood by assembly language programmers;

2) test engineers familiar with vehicle test requirements can
prepare sequences in near-English format;

3) customer and contractor quality control personnel can
easily understand and validate the sequences;

4) changes to any sequence can be accomplished by an engineer
by stating the change in test language;

5) field modifications are easily accomplished;

11'

II. F. CTL (Continued)

6) the writing burden has been reduced almost one hundred
fold;

7) on-line use of CTL enables generation and execution of
tests on-site with near zero delay.

CTL consists of 20 basic elements or verbs and their associated modifiers.
Elements can be roughly divided into four classes:

1) Discrete signal observation and control - APPLY, RESET, and
CHECK/DISCRETE.

2) Analog signal observation and control - CONNECT, STIMULATE,-
MEASURE, and CHECK/ANALOG.

3) Test flow control - BEGIN, END, TIME, SET, DEFER, and CONTINUE.

4) Special - DISPLAY, SAVE, and RESTORE.

Several elements are provided as tools for the test engineer. These tools
provide a capability which eliminates repetition of recurrent test sequences
and detailed descriptions of frequently used groups of data.

These elements, designed to facilitate test sequence preparation, include:

1) SEQUENCE;
2) REPEAT;
3) REP/TEST;
4) SYSTEM/TEST

SEQUENCE is used in on-line control. It makes use of established library
test sequences within any other sequence. REPEAT, REP/TEST, and SYSTEM/TEST
are facilities of the translator whereby repetitious data or elements are
inserted into the control file using these elements as a mode.

The basic building block of CTL is the test element. Each element has a
set of modifiers associated with it that amplify the element for a specific
operation.

Single Test groups elements together to satisfy some unique control
response, or display function to make up a single test. One to several
dozen test elements can be included in a single test which is assigned a
unique number.

Repetitive Tests are tests which are repeated frequently with slight
parameter variations. The repetitive test allows the test writer to establish
the order and number of test elements required and by simply varying the
numeric value assigned to the parameter list and calling out the unique
repetitive test name, repeat the test without restating each test element.
The repetitive test name is five alphanumeric characters, and the parameter
list can contain up to 25 variables.

12

II. F. CTL (Continued)

The next level is called a sequence which consists of a number of Single
Tests and/or Rep Tests. Two types of sequences exist: Library Test Sequence
and Test Sequence. A Library Test Sequence is a special version of a Test
Sequence. A Library Test Sequence is used whenever a function (such as apply
vehicle power) is used in many other test sequences. A Library Test Sequence
can be called singularly from the test console or by any currently executed
sequence. The Library Test Sequence will have a number of the same form as
a Test Sequence but will be uniquely identified as a Library Test Sequence.

A Test Sequence is a collection of Single Tests, Repetitive Test, and
Library Test Sequences arranged in a logical order to accomplish a specific
testing or control function. Each Test Sequence can be called from the test
engineers console. Any Test Sequence may call other Test Sequences. v

CTL fails to meet the ideal objectives which were established at the
onset of CTL development from the standpoint of readability and the use of
terms familiar to the test engineer. As in the case of ATOLL, the majority
of terms are programmer oriented and test equipment oriented rather than
test engineer oriented. The use of comment cards helps to fill in the missing
links, but this information is not interpreted. Therefore, there is no assurance
that the comment card and the CTL statements coincide. The elements may be
spelled out or abbreviated which supports readability providing the meaning of
all elements and modifiers are understood. In the application and measurement
of discrete and analog signals, readability is sacrificed by attaching an
alphanumeric label to each stimulus and measurement signal. Rather than stating:
"TURN FCC POWER ON", the statement would read "APPLY 1D747". In ATOLL this
statement would read "DIS01 MDO, 1823". The readability is less than
desired in either case. Of all terms used in the implementation of program
generation, the majority fall into test equipment signal interface names which
are identified by an alphanumeric number. While it is true, many years
of familiarity will enable the test engineer to identify a signal name and
function with its assigned number, he must still resort to tables to determine
the name and function of many. The individual reviewing, verifying or approving
must resort to a table of terms almost entirely, which increases the time span
of his task and affects the desirability of the job.

As the Titan III-C/MOL Program was canceled before the full utilization of
CTL could be realized, it is difficult to assess the degree of accepting automatic
testing directly related to having a TOL. However, the philosophy was such
that automatic testing was going to be a way of life and with this ground rule
at the onset of the program, everyone related to the task accepted it. However,
experience with a previous program was accepted to the point that the need and
use of a TOL on the CAGE program was a foregone conclusion prior to initiating
any design effort. The time and effort expanded upon the CTL was so generally
accepted that the need and requirements were included in the VIKING SYSTEMS TEST
EQUIPMENT as soon as trade studies resulted in the decision to include a
computer in the ground test system. The availability and experience with a TOL
has certainly increased the general acceptance of automatic testing at the
Martin Denver Division.

13

II. F. CTL (Continued)

As is true for ATOLL, a shortcoming of CTL is the lack of provisions
for arithmetic operations. There is also no provision in CTL for calling
machine language programs. Both of these capabilities might have been
required for guidance checkout. The sgudanc syatetm for all Tiean vehicles
has been the responsibility of the guidance associate contractor as well
as the provisions for its acceptance and testing. This has resulted in the
guidance contractor supplying the necessary equipment for guidance checkout,
and no provisions are made in CTL. All other systems were accommodated by
CTL.

The software group for the CAGE test program consisted of design
engineers, professional batch operations programmers, and real-time
programmers. During the course of the design, cross pollination of
engineers and programmers did occur. For the most part, engineers became
more programmer oriented, a few of them slipping over to the programming
side of the house. Several of the programmers professed a desire to remain

in real-time programming effort and were assigned to the Engineering Department.
The selection of specific elements resulted from decisions by design engineers
rather than test engineers. For this reason, and as a result of cross
pollination, it is felt by those involved in CTL development that it is

indeed a near-Engliah teat engineer oriented test language,

. .

14

II. G. VTL

The Viking Test Language (VTL) was designed to serve as the communication
medium between the test engineer and the Viking System Test Equipment (STE).
Since many organizations and individuals are included in the writing, reviewing,
and implementing of test procedures, it is necessary that the VTL be designed
as a conversational english language requiring a minimum of training for use.
The majority of these people are not programmer oriented or professional
programmers.

A prime objective of the VTL was to simplify the test engineer's burden
by including several shortcut features into the language and Viking data
files. Symbolic data symbols, group numbers, and system repetitive tests
are available to reduce the data input requirements.

The test sequences, written in test language, are translated by-the off-line *
software system.

The test language translator processes input written in the Viking test

language. The test sequences, library tests, and referenced data is read
from the appropriate files and processed. The output of this process is a
machine oriented sequence for the on-line system and an English language
tabulation of the composite sequence. The machine oriented sequence may be
placed in core memory, magnetic tape or on the rapid access disk file.

As the language evolved, the specific test equipment configuration was
unknown. It was assumed that this equipment would consist of a digital
computer with core memory, magnetic tape, and disk memory. The language was
designed specifically to meet the requirements of the Unit Under Test, in this

instance, the Viking Lander Capsule.

The language structure is based upon building test sequences consisting

of test blocks, system repetitive tests and library tests arranged in a

logical order to accomplish a specific test or control function. Any test
sequence may be called by the operation from the test console. Any test

sequence may call other sequences.

The lowest level is the test element. Each element performs a specific
purpose such as commanding a relay closure, establishing a stimulus, delay,
etc. Modifiers are associated with test elements which amplify the element

to a specific operation. '

The second level, referred to as Test'blocks or System Repetitive Tests

consists of logically assembled test elements which satisfy a unique control,

response, or display function. The number of test elements in a test block
may vary from 1 to several dozen. System Repeat Tests (SRT) are also second

level in the language organization. These are used to define often repeated

operations. They provide a shorthand which allows the test writer to use a

predefined set of elements by only specifying the SRT name and listing the
parameter table. SRT's are defined on the system level and are entered into the
data files so that they may be used by all sequence writers.

15

II. G. VTL (Continued)

The next higher level of the language organization is the sequence
level which is constructed from test blocks and/or SRT's. Two types
of sequences are provided: Library Test Sequences and Test Sequences.

Library Test Sequences consist of frequently used functions such as
"Apply Lander Power." Within such a sequence, all required prerequisites
and control/response necessary statements to satisfy the function are
contained. A library test sequence can be called from the test console
or by any currently executed sequence. The library test sequence has an
identifier of the same form as a test sequence.

A Test Sequence is a collection of test blocks, system repetitive tests,
and library test sequences arranged in a logical order to accomplish a
specific testing or control function. Each test sequence can be called
from the test console or by currently executed sequences.

The objectives of VTL and much of the conceptual design incorporated
ideas from its predecessor, CAGE Test Language. Fewer elements are included
with several of them being unique to the Viking test article. The short-
comings of the ATOLL and CTL are also found in this language with the
exception of a capability for communicating with the onboard digital computers.
A test element named "LINK" provides a capability for communicating with the
Guidance Control Computer GCC'and the Command Control and Sequencer (CCS)
memory. Run and halt commands, as well as load and verify single data words
or blocks of data words or instructions. Data words can be read out of the
GCC or CCS memory or registers for verification, analysis and display.

Example: LINK WC017 LOAD M0134

would cause data block WC017 to be loaded into the GCC memory starting at
location M0134. Data blocks WCO17 would have been previously defined in
the data files.

LINK WC017 VERIFY FLAG M0134 would'cause the block of data
words defined by WCO17 to be read out of the GCC memory starting at location
M0134, transmitted downlink to the Viking Systems Test Equipment (VSTE),
compared against the WCO17 data block that was loaded in the previous example,
and a flag to set for each word that does not compare properly. If all words
compare, no flags will be set.

LINK RUN will cause a command to be sent to the onboard computer or

sequencer to initiate onboard operation of their function.

The format and selection of operators or elements are definitely more computer

and STE oriented than they are test engineer oriented. It is true that the test
engineers' writing effort is greatly reduced but at the sacrifice of readability

and useability by organizations other than the originating organization. It
would be difficult to get widespread test procedure.acceptance on the basis of
VTL programs.

16

II. G. VTL (Continued)

V7L as ATOLL and CTL fails to provide an arithmetic capability which
appears to be the result of incorporating requirements of the specific
test article and system test equipment--in this case, the Viking Lander
Capsule.

In the case of Viking, time, schedule, and manpower have affected the
test philosophy and the test language. Having developed two previous test
languages for two different programs, sophistication based on prior
experience was certainly possible. However, the constraints previously
mentioned in conjunction with program requirements provided guidelines
which dictated to some extent the nature of the test language to be provided.

17

II. H. TOOL

The Onboard Checkout System's (OCS) Test Oriented Onboard Language (TOOL)
is the culmination of a development cycle beginning in 1965 and extending into
1970. This effort was undertaken by the Denver Division of Martin Marietta
for the NASA Manned Spacecraft Center. The purpose of this effort was to
develop an independent, real-time, computerized system for verification and
monitoring of experimental and developmental subsystems for various space
vehicles.

In 1966 an OCS breadboard, demonstrating the feasibility of the OCS
concepts, was delivered to NASA.5 An initial version of TOOL was provided
at that time. Development was continued with the construction of a
prototype unit called the digital test set, delivered in 1967.6 Another
version of TOOL was provided at that time. Development continued with the
resulting delivery of a flight packaged OCS with the present version of
TOOL in 1970.

TOOL is part of an on-line interactive multiprogrammed system which
enables a test engineer to create tests which utilize the OCS hardware.
The system is self teaching through the use of extensive cuing techniques.

A test engineer can write new teota, review toests previously written, and
modify in considerable detail previously written tests.

Translation of tests written in TOOL results in data list entries
which are then stored in computer memory for later execution. An interpreter
passes entries from the data list to the appropriate routines for execution
of the desired test. This differs from the compilation approach in that
a compiler translates input source statements into the machine code of the

target computer. Translation of input source code into data list entries
results in a considerable core savings for the storage of tests.

The TOOL system provides for the concurrent execution of a multiple
number of tests along with the asynchronous processing of hardware interrupts.
Tests can also be executed while monitoring operations are active. Tests
can be written, reviewed, and modified while other tests and monitors are
operating. Priorities can be assigned to the execution of tests. Allocation
of the limited hardware and software resources available is a function of the
TOOL system.

A password can be attached to a test to allow only authorized personnel to
have access to that test. Protection keys can be set which prevent improper
operation or alteration of a test.

TOOL is an English-like language making extensive use of readable
abbreviations as modifiers to language primitives. It is designed as a

special prdpose, application oriented language. Input is in a fixed format.

Simple data variables are provided along with a limited expression solving

capability. Language primitives are OCS hardware add system oriented. FORTRAN
like unconditional branching conditional branching, and looping are provided.

18 .: f,,

II. I. ADAP

The Adaptive Intercommunication Routine (ADAP) also referred to as the
Block II ACE system was developed primarily to enable the automation of
many test sequences. In pre-Block II testing the basic framework of the
software was the same as is currently used with ADAP. The test requirements
using ADAP for implementation require the same formalized input decks that
has always characterized programming requirements submittal by ACE users.

ADAP provides for storing programs on magnetic tape and the calling of
automated sequences from the test console. Portions of the Test File Tapes
(TFT) are loaded from tape and stored in core: Systems Monitor, U/L and
D/L Control, and ADAP control (subprogram). Other programs are loaded by
the Monitor and executed as requested by the test engineer from his console.

The automatic operations desired are stored on tape in groups. Each
group consists of one or more Intercommunications. Such Intercommunication
consists of one or more sequences for the computer to execute. The sequences
simulate data entry normally performed by a test engineer's execution of an
R-START or C-START switch at his console. A sequence may include command
generation, transmission, and monitoring of downlink responses before a
subsequent operation can take place.

Requirements for test programs are originated by contractor systems
engineers. The contractor then translates these requirements into formal
subprogram specifications fully describing all parametric requirements and
operations of each subprogram. These specifications are then submitted by
the contractor to the computer programming group after NASA approval.
Professional programmers write the subroutines and perform the mechanics
necessary to insert the subroutine into the TestFile Tape.

The parameter cards submitted to the programming group by the contractor
are unique to ACE and are not intended to provide readability. The program
was not designed to aid the test writer or to improve readability by
reviewers. A programming input scheme had been in operation which utilized
the ACE-S/C in a manual mode. The addition of ADAP enabled a more closed-
loop automatic mode to be implemented.

Program Requirements Processing Specification (PRPS) cards are prepared
for both Uplink and Downlink equipment utilization and interface requirements.
In addition, on Operational Checkout Procedure (OCP) must be prepared. The
OCP is a sequential description of the order of START executions, START
switch settings, and the expected response on the various control consoles.
A Test Engineer Test Oriented Language would be expected to accomplish both
of these tasks within a much shorter time span and improved acceptance
routines.

ADAP has been responsible for implementation of Automatic test programs.
In so far as the degree of automation currently experienced with ACE-S/C and
the acceptance of automation attributed to ADAP, a need for more automation
was pushed by one of the contractors and ADAP was proposed as a means to
accomplish this end. The need involved time: performing one manual ACE Test
consumed 2 hours; when implemented with ADAP, the test time was reduced to

fifteen minutes. In this regard, ADAP hasattributed to more general acceptance
of automation by ACE users.

19

II. I. ADAP (Continued)

The test system characteristics definitely affected the implementation
of ADA? as similar procedures for implementing tests are carried on with
ADAP test program inputs. The formerly manual mode of test initiation was
incorporated into the automatic mode programs by simulation of START switch
execution.

Test engineer and programmer interfaces are rigidly controlled by the
documentation requirements initially implemented. As a result of this
formal organization, test engineers and programmers for the most part are
isolated from the cross pollination process.

20

II. J. ASEP

Automatic Sequence Execution and Processor (ASEP) has been developed
for use in ATM checkout utilizing existing ACE-S/C equipment and programming.
ASEP provides the capability for parametric controlled sequences of commands
and displays and also assures maximum core utilization through packing or
relocatable, relative addressed sequences, Whereas the ADAP test sequences
were located on magnetic tape and called by test engineer or executed
sequence, ACEP programs are resident in core.

Test engineer interaction with the equipment and the program execution
is almost identical to ADAP. The C-START addresses are implemented in the
same manner and with the same codes indicating the ACE-S/C Operating System
and Monitor will probably be used for SKYLAB A programs.

Automatic routines will simulate R-START and C-START execution.'

Programming requirements will be input to the programmer group in
the same manner that ACE-S/K programs have been implemented in the past
with the use of Uplink and Downlink PRPS cards. One significant difference
will be in the specification of limits--these will not appear on the
Downlink PRPS cards,

ASEP is intended as a test language. As such, the test language input
may override the necessity for Operational Checkout Procedures and enable
the PRPS and test language inputs to provide the machine language object
program. Sixteen elements or operators are utilized. Many of these elements
such as ADD, GOTO, LEGAL, SET are computer/programmer oriented. ADD provides
for incrementing internal computer countei. SET can affect a counter, flag
bit, or event to a specifiedstate. LEGAL establishes the C-STARTS that can
be used to activate a particular routine. While GOTO is programmer oriented,
in areas where cross-pollination.between programmers and test engineers can
take place, test engineers accept this term as well as such terms as BEGIN,
END, EXECUTE, INTERRUPT, and IF. Additional elements provided by ASEP
include AUTO ONLY, DISPLAY STATUS, DELAY, DISPLAY (40 characters, or only
some characters--leave rest unchanged, or display contents of address
counter) MEASURE, REMARK, and STOP. ASEP provides a capability for the
test engineer to change limits via card reader input. An ASEP routine must
be inactive while changes are being made.

As ASEP has not been used on a program, its affect on acceptance of
automatic test sequences is an unknown. However, the availability of ASEP
for the SKYLAB program will undoubtedly insure that automation of test
sequences will be utilized to a considerable extent. The SKYLAB program will
be Huntsville's initial use of the ACE-S/C and the preparation of test input
requirements caused some alarm early in the program. The development of ASEP
was initiated no doubt to simplify the test requirements for the test writer
and to encourage the utilization of the digital computer in its natural role.

21

II. J. ASEP (Continued)

The test system characteristics (in this case, ACE-S/C) very definitely
have resulted in specialized test language. The simulation of R & C START
switches, the method of handling parameter changes, and the display
characteristics are the most obvious characteristics which aro accommodated
in the language.

Due to the ACE-S/C Programming Requirements Organization, it is felt that
test engineers and programmers will continue to interface through rather formal
documents which will inhibit any cross-pollination. Each function is rigidly
bounded and buffered. Each will continue to perform his tasks through clearly
defined channels and process forms.

The objectives of this test language appear to have been satisfied. At
the outset, a method for closed loop automatic checkout maximizing core-
usage wit;. desired. These appear to be provided. The test article required
no more and the checkout equipment is capable of meeting these requirements.
Comparison of this language with those previously discussed indicates the
same shortcomings of the majority in the form of readability, completeness,
arithmetic operators, and in the provision of a document which serves the
requirements of test engineer, quality control; project verification, and
management review,

/ .

. . .~~~~~~~~~~~~~~~~

22

II. K. OTHER LANGUAGES

The languages previously discussed are, with the exception of CLASP,
oriented to the programming of test and checkout applications. They are
special purpose languages defined for use in a particular problem area.
Many other higher-level programming languages exist, some for special
purpose applications and others designed for more general usage. It is
relevant to this study to give some consideration to these other languages,
at least to be aware that the problems encountered in creating a test and
flight engineer oriented Computer language do not end with the specification
of that language.

Significant questions remain to be answered with respect to the actual
development of a compiler and operating system for that language. One of
the most basic of these questions is in regard to the choice of a language
for use in developing the system to support the problem oriented language
itself. Considerations relevant to this choice are of a completely different
nature than those governing the design of a problem oriented language.
Questions arise with respect to the best utilization cf professional programming
talent to treate the necessary supporting systems in a timely and efficient
manner. After these systems are developed, the further question of proper
long-term maintenance arises.

The utility of higher-level languages for application to specific problem
areas is recognized. The question then becomes one of whether such languages
are available to write compilers and executive systems. At least two such
languages, both reasonably widely known, are available. A small number of
lesser known languages are available specifically aimed at compiler writing.
One language, currently under development, shows promise of being a very good
choice for both compiler writing and executive system development.

The discussion to follow will give an overview of two multipurpose languages,
JOVIAL and PL/1. Both are languages that have proven themselves in the applications

under consideration as well as providing capabilities in many other areas.

JOVIAL - Jule's Own Version of the International Algebraic Language was
developed by the System Development Corporation and the first compiler
was operational in 1960. The language has seen extensive military use
and a version of JOVIAL is a standard programming language for Air
Force Command and Control Applications. The Command and Control Appli-
cation requirements necessitated a powerful language combining a balanced
set of numerical scientific calculation capabilities and data- handling
capabilities.

The basic objective of JOVIAL is to provide a procedure-oriented language
for the use of professional programmers in solving large complex infor-
mation processing problems. The language is considered to have fulfilled
its objectives but has not been used extensively outside of military
command and control applications.

23

I;. X. OTHER LANGUAGES (Cont)

JOVIAL has been successful in techniques whereby JOVIAL compilers have
been written using the JOVIAL language itself.

PL/l - This designation is the name of the language and is rot an
acronym. PL/1 was developed by IBM and the first compiler went
into operation in 1966. The language was designed to be applicable
to all those areas previously covered by FORTRAN (a scientifically
oriented language), COBOL (a business-oriented language), and JOVIAL.

PL/l is a procedure-oriented language for which almost all concepts
relating to that type of language have been implemented. It is
designed for the use of professional programmers.

The language has been successfully used for writing compilers and
operating systems.

Another language which merits consideration for the development of
compilers and executive systems is the Space Programming Language (SPL).
SPL is an outgrowth of studies undertaken by Systems Development Corporation
regarding spaceborne software, JOVIAL and PL/l were considered the best
available languages for the entire aerospace application area. Neither
of these languages met all requirements, however. As a result, a new language,
SPL, was defined. This language is an extension of JOVIAL.

The CLASP language, one object of this study, is a subset of SPL.
Study of the capabilities of CLASP will perhaps be indicative of the power
of SPL. The complete language, designated SPL/MARE IV, is expected to be
specified by the end of 1970 and will contain features usable on aerospace
problems and real-time programming tasks. Due to its nature as an extension
of JOVIAL, compiler writing capability should be fully implemented in the
language.

The language is being developed as a standard language for space
applications and, as such, will probably be involved in NASA future pro-
gramming efforts. SPL merits attention as development progresses to determine
if stated goals can be met.

24

24

111i LANGUAGEX CHARACTERISTICS COMPARISON

The form and content of the comparison table on the following pages
is fashioned romewhat after the characteristics identified by SammQt.1

An attempt has been made to cover the general and non-test-oriented
characteristics at the beginning and the more technical and test-oriented
characteristics toward the end.

Many semantic and conceptual definition problems exist between
programmers and engineers and between engineers with different backgrounds.
A glossary of definitions has been included in the hope of alleviating some
of these difficulties.

, .,

4 . I .

., ~ ~~~~~~~~~~~~~~ z

25

* :, .;

I'

.TABLE I . LANGUAGE COMPARISON TABLE

Characteristic Purpose

1

ATOLL Provides a test-oriented language
for use in automatic checkout and

Acceptance Test Or Launch Language launch of Saturn stages and vehicles.

Test oriented, test equipment inde-
ATLAS pendent, English-like language for

use by test engineers and technicians
Abbreviated Test Language Avionics to document test procedures for shop

Systems tests of commercial airlines avionics
units and to program general prupose
Automatic Test Equipment.
Eventually to be written by avionics
suppliers and used by airlines.

Procedure-oriented language for use

by professional programmers it the
development of real-time aerospace

Computer Language for Aeronautics for aerospace computers:
emphasis on guidance and navigation.

anld Space Programming

..

Other Languages

26

.TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Language Responsibility Who has Implemented the Language

2 3

ATOLL

This language was developed by IBM SATURN7 contractors, (Boeing, NAA, DAC,
for the NASA-MSFC to be used & IBM) for Stages S-IC, SII,.SlVB
specifically with the RCA-110A and IU utilize the language.
computer checkout facilities.

ATLAS

ATE Subcommittee of Airlines Numerous ATE manufacturers for the
Electronics Engineering Committee ai arlines, including MMC, Bendix,
originated and mnaintains. ARINC Collins, Hawker-Siddeley Dynamics,
publishes documentation. ! Sperry, etc. frequently implemented

in a modified form.

CLASP
Originated by Logicon, Inc. for' Currently under development..,
NASA and maintained by UDIG (Users,
Designers, and Implementers Group) -

27

2±I

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Documentation Naturalness of Statement Structure

4 5

ATOLL

Specifications of the Operating Statement structure lacks readability
System 'for the Saturn V Launch due to use of abbreviations, specific
Computer Complex, Vol. II, IBM nomenclature of interfaces, and
No. 66-232-0001, NASA, MSFC, measurement terms. Comment cards
Appendix A provides the necessary provide understanding of program
information for using and documenting intent, but as comment cards are not
ATOLL test programs. interpreted by compiler, comment and

statement may not coincide..

ATLAS

ARINC Specification 416-1, Statements start with flag and step
ARINC Report 418 number, then verb and other easily

understood fields and/or phrases
which are generally self-identifying.

CLASP

Report "Flight Computer and Language Straight-forward to programmers
Processor Study" Logicon, Inc. experienced with higher-level
NASA CR-1520. languages.
UDIG is currently developing a
language standard.

I,

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Self-Extension Capability Consistency of Ruies

6 7

ATOLL The prirrary example of rules incon-
aistency is related to the operator's

thaNo self-extension capability otherng DSFG, RECD, and RCDC in regard to thethan the 'capability for naming ;.ondition field. For the most part,
subroutine or subprogram which will' , a
be executed by an LXEC operation. (in relation to display), a "1" in

the condition field clears the diopla:
before preseutiinZ the tnew message.
In the above operators, the con-
dition field is 1, 0, blank, or C
and CLR must be placed in the varia-
ble field to clear the display.

ATLAS

No provisions for new primitives
to be defined.

.- f

CLASP

Function defining capability only.

Very consistent rules.

Cnis bti

Consistent between
statements.

'types of '

i , , ,u i i 1 , ,, i , i , i i i

' ,. ,.,.

/

[± i I I ii I I llll I il I I I I I

' ;

I

U

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Self-documenting capability

8

ATOLL
ATOLL has self-documenting cap-.,
ability through the use of comment
·cards (Remarks Cards).

i

I
User Program Maintenance

9

Modifications to programs must be
submitted to NASA-MSFC for approval,
then to IBM for implementation, and
finally verified on the S-TB or S-V
Breadboard Facility before acceptance
into the program.

'ATLAS

The intent is that the statements, Compiler accessibility is a common
as interpreted by the compiler, problem and has resulted in some
should suffice for documenting the development of ladguage subsets or
procedures. Comments, on separate adaptations for use in (object) test
cards, have no restrictions. equipment. Change (configuration)

control may dwarf'such problems in
some instances.

CLASP

Primitives enable reasonable self- Maintenance of user programs may be
documentation without comments, and complicated by the target machine
commentary can be inserted in any dependent features of CLASP.
statement, Compiling computer accessibility

and project change controls may also
be more significant.

ADAP: a "reverse compiler" prints TOOL: Very abbreviated statements
out explanations of statement designed for interactive
actions. review and alteration by the

operator with limited display.

I.

. . ' ' . .; ,,,
,.~. .- i _ z - i I i-- i I I I l III il

I-S-
_ __�I___

!-

I

I

.TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

General Characteristics of Compilers Format

10 11

ATOLL

The ATOLL Computer is a stand alone IThe format provides for both fixed
program which may be run on any and variable fields. The compiler
Saturn ground computer (RCA-11OA) provides for multicard statements.
The program is self contained and ' Continuation cards are permitted
requires no additional software. whose number may vary dependent upon

the operator code. Only the variable
field is read on continuation cards.
Remarks cards (comnents) have ,.
forltzts but are not interpreted by
the compiler.

ATLAS
ATLAS compilers ha.ve been implemented Restricted by generally logical
by several companies, including MMC. arrangement .of types of fields or
MMC's ATLAS compiler is written in phrases. No limit on field or.
FORTRAN for use on a 360/65 computer statement lengths after the statement
and generates code for use in an numbers.;.
H-315 computer. The compiler is
complex and requires considerable
memory. See APPENDIX A.

CLASP'.
Not currently available. Free Form. ·

. , .

MOLTOL, ATOLL-II: Format is variable
with control

. ,, ,. ,8, statement.

31

.-%

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINU1D)

Character Set Significance of Blanks

12 - 13

ATOLL

A - Z Blanks have no specific aignificanc.
O - 9 Dependent upon certain operators, a
*, i () ... '. "0" or a '"1" must be provided to

indicate action and must be blank.
However, the same field may be -blank
for another operatord.

ATLAS

Upper case letters A thru Z Blanks generally ignored' in identi4
Numbarals 0 thru 9 (also A thru F fiere but used as delimiters in lists.

for hexadecimals) of connections. Successive blanks
Symbols + - * / , () . ' $ - ignored.
Blank
(Lower case letters represented by
/A thru /.Z when required for inter-
face identifications)

CLASP

Letters A thru Z (upper case) Blanks used to delimit identifierse,

Numberals 0 thru 9 numbers, and primitives.
Symbols + - * / , () . ' $ ' Successive blanks ignored.
Blank

" 4 '

32

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Noiae Wordo

14

ATOLL

Comment or .REMARKS cards are
utilized but are. not interpreted
by the compiler. A "*" in column
indicatas a remarks card.

1

Operators,

15

No logical or arithi*tic operatoro
other than Lifmind and avyeXa
are provided,

ATLAS'
Allowed only on comment cards with Arithmetic
"C" slag or "B" flag. Relational

Logical (Trivial usage)

CLASP.
May be ingertod anywhere in a Numeric
Glource program or statement. Logical
De limited by double apostrophes Relational
at beginning and enda Boolean

., ' ,.. ,...

::~~~~ " ' ; .!. ..

j-: i:: .:· --

33

I _ r

aommont or

.5.

; ,. ,

m

..

. . s .~

I

I
I

. ·

I

.TABLE 1. 'LANOUAGE COMPARISON TABLE (CONTINUED)

Pimititve Termo De~lmiters

16 17
ATOLL

All operatora, table namas, time Card columns, coirma, and blanks
cQllo, and program names are in the variable f&eld .
primitive .

ATlAS
40 vrbao (oporation or aetion codes) Blank $
30 nouns (typea of signals)
80 modifiers (characteristics of

signals) t ' .
58 mniso. (RANGE, ORg, BY, TO, etc.)
15 Connaotiono Fields (OND, (Phase)

A, B, C, ere.)

CLASP

79'primitiveo, 56 are reuseved and Blank . " '

cannot be used as programmer
defined identifier . ' .

· -

.~~~~~~ ~ . I I I I II

34

-. ' I

~. ,

,,

.

.TABLE 1. LANGUAGE COMPARIBON TABLE (CONTINUED)

Identifiers (labels. & name;) Arrays, lists,, struoture

18. 19

ATOLL

Labels (applied through DECLARE. Tables, time cells, and discrete
statements) a statments. lists

A $

/IrhA e

ations generall a.llowed except ' "table" of values into a pre- ,
() symbols. Identifiers can be defined subprocedure when it is.
applied to data, dummy parameters, calledi
funationms, specified 'characteristics
of nouns, messages, predefined
procedures, etc.

aCLnSP *tArra;y allowed with up to three
CLASP<~~~~~) m . d i dimnsions, Subscripts can be

Must begin with a letter: limited t declareddeclared to be integer constants,
8 characterss may be used for data, integer variables, or implicitly
statemrnts (pollcew with period), defined. Subscripts in references
subroutines (preceded by a period), cam be integer formulas or non-

s'calar (refereneing an antire
dimension)o
Limited structure capability via
data grouping. No arrays of
groups,

. ' . . ~ ATOLL-II, OLTOL: Broad capabilitiea
are provided,

~....6 ' ~. .. ~ ,including lists,
i... .B · .·': -- ' ,· :·. ·· :pair-lists, arrays

35

.TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Program Structures Block Structure

20 21

ATOLL FiPrt and last ATOLL operators ATOLL programn are reotricted to
of every test program will be NAME blocka of 500 machine statements.
and END rsapectively. Subroutines Provisions are made for communicating
start with BEGIN and end with RETURN. desirable block separation points in
First card following NAME must be a ATOLL with the use of BLOI.
REMARJS cards associated with NAME.
CODE card to follow NAME ABTt REMARKS
card which opecifiod consoloes to be
allowed intoraction with a specific
program. Machine ITnguage subroutine
require NAME, REMARKS, CODE and MLSR followed by the binary deck and

ongluded'with an E,.] card,. .
ATLAS
All doclaratives (SPECIFY and DEFINE) No specific provisions oecapt a
are contained in the "preamble" which compiler directive flag to identify
must precede th 'imperatives of the an allowable (manual) entry point.
"procedure." This flag is sometimes used to

define allowable block boundaries,
which are compiler determined if
necessary in the object system.

CLASP
Data declarations must appear before Provided for conditional stateaents
the'main body of the program. The and loops. Also appears as a oub-
main program consists of imperative routine-like group.of statements
statements and compiler directives. identified by the primitive CLOS.
Finally, procedures are located at,
the.end of the main body of the
program.

. ' . ' ' :,

. I ... I I I-III . I

36

.. I ;,.

. , , ,

.t4

* ';T
. .

.TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUED)

Loop Structures Subroutines Structures

22 23

ATOLL .
Loop structureo are. provided with the ATOLL subroutines referred to by
use of GOTO, EXEC, BEGIN and RETURN name and called by EXEC operator.
are the otart'and end point; of an BEGN and RETN operators identify
ATOLL subroutine. EXEC *aadutes starting and concluding statements.
subroutine by name. In addition, capability provided for

calling machine language subroutines,

ATLAS All subroutines and procedures are

G08 OALTER, REPEAT--. TIMES, PERFOR defined using ATLAS imperativa state-
TIMES can be used to construct mentos if in the 'preamble" (DEFINE;

loops Some loops 'are implied by ---; PROCEDURE,---) they are called.
specific verbs such as MONITOR & by PERFORM, '---', if within the
ADJUST and still others could be the 'Procedure" they.are recalled by
result of object machine and compiler REPEAT, STEP-number-THRU STEP-
implementation, examples are START number'-
WJHEN, STOP WHEN, DELAY, WAIT FOR,
etc.

CLASP
Simple loop capability provided of Pro-odure capability provided.
form FOR 1 - n i by n2 to n3 where Multiple input parameters and

multiple output paameters.i i an ntegeor variable or constant mu

DO statement provided

., ' . .j, . :'

; , [. .' ·
_ 'd:

37
.. i.

:·· ,

. ~~~

. j

,f; ..

. .

I I

r

. :.

.I.

'4

V z

I

I. ;

. I

,!:

i,

:"

,· .

I''

.TAaLZ 1, LANGUAGw COMPARISON TABLE (CONTINUED)

Diroeat Code Capabilitiago ntaet' on with Operatn Dyatyoeu

24 o 25

ATOLL

No direct codo capabilityo ATOLL Execution of Machine Language sub-

logos pconrtrol du,4ing machine language. routines or toot programs causes
program execution. ATOLL Executive to 1Oes control, If

errors occur during program runt
system halts and displays error
message to teot engineer. In dertain
cases, toot engineer alternatives
are displayed.

ATLAS
.Capability ic provided to LEAVE ATLAS No provisions.
and RESUME ATLAS, (presumably to allow
direct or machine code insertion, but
would also allow any other language
insertion. Thore are no communica-
tiono rules for such inserted aeg-
ments except that a RESUME ATLAS
statement in the direct code segment
would terminate the direct code
.execution,, .

Direct 4odm 4apability provided Undfined t prent.

,, ' ·~~~~~~~~~~~"L. '. , . ,

: .

*1M

.,

i

/.

,:i-

·· r

1.

I ,; .

, .

; I

,TABLE 1. LANOUAGE COMPARISON TABLE (CONTINUED)

Data Types Formula Type :

26 27

ATOLL

Lacking arithmnti 'and logical NOT APPLICABLE
aapabil.ties,- this category .is (Same reason as #16)
not applicable to ATOLL ... :

ATLAS

Raal . Numeric - Real '
Complex Complex
Floating vo ",. Floating Point
Text ' - LogicalB Bit String construction

and comparisons using
LOGIC SIGNAL

Boolean Relational - Criterial GT,
LT, EQ, NE, UL, LL

Results: GO,
NOGO_ HI, LOEQ. NE

CLASP Nuumbic - Fixed point
Fixed point Floating point (when hard-
Floating point (when hardware capt ware capability is provided)
ability is provided) Integer
Integer Boolean
Boolean . , Mixed
Test (character strings) Logical - Bit by bit maniputhtion of
Hardware (depends upon,object , numeric, textual9 and logical formul a
computer, allows direct reference to .Boolean - True or false results from
machine registers) evaluation of relations.

l - . . ,

,

.4

, ;;i
'.

TABLE I. LANGUAGE COMPARISON TABLE (CONTINUED)

Assignment Statements

28

ATOLL

Assignments provided by language
include program names, set time,
set indexes, increment indexes,
sot flags, diocrates which can be
issued, establishing profiles,
changing profiles, assigning
termination procedures, declaring
names for PCM addresses.

ATLAS
DEFINE and CALCULATE can assign data
values and text. SAVE can assign a
now identifier (label) to an
identified value, e.g., SAVE,
IMEASUREMENTt 'DRUTT'

'CLASP

Simple, multiple, nonacalert and
exchange aosignment statements are
provided.

Sequence Control

29

Programs normally run in sequence by
step-aubstep number. Succeeding num-
bers must be increasing but not
necessarily increnmented by one. Sub-
routines may be called by EXlC operato
and may appear anywhere in program.
GOTO operator causen unconditiorial
transfer. Branching statement number
contained within program statements
causes conditional transfers. Execu-
tive can force terminate program accor

.P&-t o-...texmination progo~mt_ sluded

C0 TO, ALTER and REPEAT 1llow trans-
fers, GO TO can be conditional with
multiple destinations determined only
by Boolean Relational Results which
must have been set in previous
statements, ALTER STEP- - means
change some field values as specified
and re-execute stop- -J it is a
"non-preferred" verb and may some-
day be deleted.

CLlS. statements are executed in the
.sequence in which they appear except
as altered by control statements,.
Simple GOTO statement for transfer to
a statement label. Switched GOTO
for-transfer to one of many state-
mentB or CLOSES depending on an index
value. Statement of IF. THEMN ELSE
type used to transfer control or
execute a section of code based on th
evaluation of a Boolean formula.

MOLTOL, ATOL-II.I Provisions and
rules for assign-
ment are very . · ·
extensive, 'includir
access to individua . . .
bits of a BITS
variable .

6~~~i

e

40

program.

I .'.

{ I.

-.
i·

i FI I~~~~~~~~~~~~~~~~~~~~~~~~~~

j

I

I
I
I

m. I

I . . .
.. I

1-
in

I

TABLE 1. GANCUAGE COMPARISON TABLE (CONTINUED)

Error Conditions

30
ATOLL

Hardware Zallures are sensed during
run and are displayed as are certain
diocretes which require test coacole
awitches to be in outs positions
Diagnootic error table printed after
compilation of program contains
explicit errors. Undefined branch
table will be output.to printer if
undefined branches are found during
compilati'n.

ATLAS

No provisions.

Operating System and
Equipment Handling

31

,Linguageaccommodateg the outputing of
,discreteo and analogs, and the input-
'ing oA discretes and analogs, Display
!of vhicle status, print, and record
on ,nagnetic tape are included.
Calling of nachine language Test
]Programs are also provided. In
,addition, program control via hard-
Iware response is included,

Input/output provisions are made for
operator interfaces, records, and
definitive unit-under-test interfaces.
There are no provisions for storage
or memory allocations, etc .

CLASP No language statements relating to an

No specific error condition sequence operating system are defined, Many
control statements provided. computer oriented language statements

are defined.
No input/output capabilities are
provided. Use direct code and hard-
ware declaration capability.
Several arithmetic and data manipula-
tion functions are provided in a sub-
program library .Subprogram names
are considered primitives.

MOLTOL .

Assures a defined segment doesn't

got divided by overlays when DiMED : ..·
is usede -

' :,_ . ' . - . ' . ' . - ' . '.' ' '~'|. , ' 1

-41 i
. '

_ :: - ---. -t----

0

I

I

I

I.

. .

. I..

.TAILE 1. LANGUACE COMPARISON TABLE (CONTINUED)

Compiler Directives Tea teOri.entntion

32 33

ATOLL
Compiler control cards direct input/ Oblectives of language directed toward
output options (input from tape or Test Engineer's needs for inputing
cards) output teo printer only or to his test requirements into the
printer and tape) whether edit computer checkout systen.
operation is to follow, and whether
two or more object tapes are to be
copied onto one tape. Comparison
between master tape and several
other t*opoa iS provided.

ATIjA. Actions lnclude Ciig, iONNiCT,I DI-
Compiler may use "flags" (if needed) CONNECT, OPEN,, READ, GETUP, ADJUST,
from thea first column of the first APPLY, MEAS1ME MONITO1t1, REMOVE,
line of a statement, and the DEFINE VERIFY and WAIT FOR, all of which
and SPECIFY statements of the are reasonably accurate represen-
preamble. Flags include S (repeated tations of expected actionso Others,
later),E (entry point), B (destinatil such as DELAY 9 CALCULATE, COMPARE,
of GOTO), C (commantary) and X (retai DISPLAY, INDICATE, PRINT, ZRECORD,
programmed connections), are common actions that are well

understood by test personnel. The
remaining actions are not difficult.

_LZ~~AS~P . rtor test engineers.

Compiler directives are provided for CLASP has no test oriented
debugging and timing (used with a characteristics explicitty dofined.
target computer simulator), and for
space and. time optimization and
direct code usage,

:': ~ ~ 4

I4 I.

TABLE 1 LANGUAGE COMPARIO8N TABLE (CONTINUED)

Engineering-Orientation Mann/Machine Interfaces

34 35

ATOLL The language provides for teat engine

While many terms are more engineer intervention from the test console.
oriented than teat oriented, the Information is also displayed to aid
language itself is geared toward the his decision making. Test results.
handling of teat operation; rather can be displayed and/or printed.
than toward .engineering problems. SEMI operator and error conditions

provide for predetermined operator
,intervention, During course of test
run, test engineer ma ,take eovr.-'
control of his functions and
conduct test locally.

ATLAS Actions are test and programmin PRINT, DISPLAY, and INDICATE are
terms familiar to moat engineers. specific operator interface terms.
The NOUNS and their MODIFIERS (which Messages and variables are adequately
are the largest group of primitives). accommodated. Since ATLAS is other-
are engineering terms such as AC wise test equipment independent, ther
SIGNAL, SYNCHRO, TRIANGULAR WAVE are no provisions for operator in-
8SIGNAL, TACAN, VOLTAGE,' PHASE SHIFT, puts but an implication that they
IMPEDANCE, MOD-INDEX, etce In exist as illustrated by WAIT FOR,
general, these terms would be mean- MANUAL INTERVENTION.
ingless to other than engineers and
would be used only when the test u red thm. Otber terms include dimen-

ional units and pin desiJRators UkL.. LO. GN.D etch)

CLASP

Providcu ,engiunering oriented Provides massage text input and
mathematical capabilities but is output capabilities
primarily A programmer oriented
language .

* U .

43
.,

;1

, .. .

TABLE 1. LANGUAGE COMPARISON TABLE (CONTINUID)

Uasorda and Logs, Time Tags gltipla/Parallla,.Aation

36 37

ATOLL

?Provlision arc made for recording Thp language does not provide for
~kaulu on .- ard copy or on magnetic multiple operations to be performed

simultaneously. IUDC controllers
taapepa Where time arelevant time permit simultaneous internal

operations but the language does
not implement this feature,

ATLAS

RECORD and PRINT are obviouoly
intended to make records. There arenable n T
no specific provisions for time
tagging reaord. ...

.~~~~~~1 . : : iii
~

{ ll

CLASP

No capability provided, No capability provided. :

.,

. MOLTOLI ATOLL-II:

.~.. . InS~de atatemento to otare and
:. o ' .9 synchronize, paralIel' programs.

-. (

'

,:' , · ' ·:
·~ ~~~~ .· .. ,,

'.~ ~~~~~~~~~~

_ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~.

44*6.

. .
.,I

I . ·

TABLE 1. 'LANGUACE CO=2ARISON TABLE (CONTINUED)

Monitoring Interrupt Initiated Routines

38 39

ATOLL
SCAN and TEST.provisions provide a Essentially no interrupt capability
limited monitoring capability, provided by the language,
However, no continuous monitoring Conditional provisions can give
capability ia provided by the languag4 control to the test console or
Function Executors can be called branch'within the program.
from the ATOLL program (MMNTR) and the
frequency of testa specifiodl but the
ATOLL program is not interrupted
or alerted to any out-of-tolerance
conditions ,. .

ATLAS
MONITOR provides for repetitively No general provisions except
measuring ahM displaying a single operator interrupt of MONITOR
parameter until 'stopped by operator ,. routine,
intervention, There are no
parallel actions definable in
ATLAS.

%:

CLASP
No capability

I

provided.

Inhibit/Enable interrupt capability
provided. Capability for
execution of sequence of statements
upon occurrence of enable interrupt
and return-is provided. , -,

e

MOLTOLt ATOLL-II:

:" - " *- -. ..- ,.. Include provisions to.'POST
procedures to be executed 'for
specific interrupts or operator ..:
intervention.

......... i

45

I
. I

1
4 I

I

i

;

I -

. . I

.I

. I

TABLE 1; LANGUAGE COMPARISON TABLE (CONTINUED)

Test System Dependeoiy Progran (Project) Orientation

40 41

ATOLL

Considerable teDt system nomen- Language has been implemented to
clature included within ATOLL provide for specific teat system
statements. and for the Saturn IB and V

programs

ATLAS

There is dependency only to the ATLAS ia not project or program
extent that dioplay, recording and oriented except by the limitation
a universal UUT signal interface of its engineering terminology.
capabilities are assumed.

CLASP
CLASP has many computer dependent No orientation to any specific
features, such as in-line assembly project.
code capability, hardware register
control, and dependency on computer '
arithmetic functions available, No
test system dependency since CWI.
is not designed for test
orientation.

:' : ' ·': ' ' .I

., '. " .I t ' .'.

/ _I I' , _. Ill I I I I I

46

TABLE 1, LANGUAGE COMPARI8SON TABLE (CONTINUED)

Clock & Tim4 Controlled Actions Program Controlled Indicators

42 43

ATOLL

·Language provides for countdown and .7 Index registoer can be used for
Greenwich time activitieo, Delayed countero or program control. 48 flags
time is utilized by operator, CDT can be defined,
or GET can be compared with test
event occurrence and program halted
until desired time is reached.

ATLA8
The Boolean Relational Results (G00

There are no oxplicit provisions for LI, etc.) are set and reset by
external clock or time input, evaluations and remain set until
Individual statements allow time further evaluations occur. Any
delays to be specified relative to other status indicators or flags

-other statements. are awkward to create and maintain
in ATLAS.

CLASP No specific indicators provided.

No specific capability included in
languagoe, Reoponse to clock interrup g
could be handled via interrupt
capability.

. '· . - .

, - , 1 ! ,1,1 i elm. .. : - i I FIII1

47

.,, . .' ..

': ·

;.

.:: . :

. i

: .,:

i., .

. .

TABLE 1. LANOUAO COMPARISON TABLE (CONTINIJUD)

MultipaPcamter Teots Special Discipline Provisions

44 45
ATOLL

No prov:sions 'for multiparamater Checkout system provides for special
telting, disciplines but language hea not

unique capabilities for hydraulics,
pnQumatics, or propulsion.

ATLAW

Each aation verb involves a single ATLAS contains many discipline
parameter, howevor, a group of such oriented noun-modifier nets, e.g.,
testa could be programmed in a .' PAM, TACAN, VOR, ANOMETRIC.
,DcBldZ procedure Pand subeeqnsantly (NOTE: When MANOkMTRIC is used the
called by B single YPEPORP stateoentU signal is actually pressure-not an

electrical analog--the transducer is
a part of the test oystem controlled
by ATLAS),

CLASP :

No capability provlded. Specialized terms available with
regard to target computer machine
instruction operations .

.....' '"",,

48 !J' ' .;

,.
, I

i

TABLZ 1. LANGUAGE COMPARISON TABLE (COIrINUED)

In2faoo Chnaraaoetov ic Toet Lavel
Spcif/icationa (Unit, Subaybtem, gyotem)

46 47

ATOLL
Language doesa not accommodate inter- Language, checkout system, and
face characteristics of the unit unit under test are dependent upon
under test. (Input impedance, " installed subsystems and systems
output impedanCe)...: test only. Checkout syatem

structure change would provide
block box teat capability but
would be ineffioient.

ATLAS
Interfacea, physical as well aa ATLAS is intended for unit (black
electrical, can be fully specified, box) and lower levels of testing
as can accuracies, connection . by a very general purpose test
identification, loading, and system, It can accommodate higher
ranges. ATLAS has some aignal .levels, but not efficiently.
type deficiencies that' are to be'
added later.

CLASP
No sapability provided. No capability providedo.

e.

.
.· , · ·. · - ' · ' . · . ' . ' , ' ,

.. ., , ... , ' ' . ; * r *. ; W - .

-~~~IIIJ _1 l'...

49

,i

.1

i.

'TABLE 1i LANGUAGE COMPARISON TABLE (CONTINUED)

Digital Interfaacs Execution 1atg Control

48 49

ATOLL

Digital intor£facas are accommodated No' capability provided by the
by machine language test program= language to vary rate of statement
which can ba called by ATOLL operator execution. DELY operator may be
ATOLL executive loses control during uted to do thio but would be
machine language teat program opera- highly inefficient.
tion.

ATLAS

LOGIC SGN1AL includeo-samo provisions There is no explicit execution rate
but lackl complote definition. . control. Statements are assumed to
Additions are being tudide ' be executed asynchronously as

rapidly ac the teet syatem can
respond .

CLASP
No capability provided. . No capability provfded.;

MOLTOLj and VTL provide for uplink MOLTOL provda:,; for assuming 100
digital transmission, execution of milliseconds btwoeen execution of
UUT digital program, downaink trans- succeeding steps until a atatement
miasion, of digital data, and changes the interval.
eVrification of transmitted data.

50

,,

* I* I
';:,

: .:,

.I

_ I.

C

TABLE 1, L*ANUAOE COmPARISON TABLE (CONTINUED)

ATOLL

ATLAS

ATLAS ia a test oyatem prograrmming
language rather than a computer
language, Inputs and outputs are
hardware system interfaces and
may be physical as well as
electrica.

CLASP
CM8P has sevoral capabilities that a e considered unique with respect
to other higher level languages:

Extensive fixed point capabilities wi :h respect to scaling.
Temporary variables which take on var able attributes depending on usage.
Provilion for modifiable constants (tose .which are fixed for execution of
a program but can be modified betwein exQcutions)

Scaling control over intermediate res lts.
Compiler optimization directives.
Stress on object code efficiency.

: , . i -' . ·

51

½,

· .'

'·, t'

. .

.,I

I

-i

I , . ..I . I .

., '
, :

;

I I.

I l
r

l: l

I

. . , .

/. . ': .

l ., ' '

', -, ' . ' ,'

.,' l ' '.
j -' ' 1

. *,

. .

_ ;

. . . t .

.

52

I .

I

I

I.

I
i I

·. .,,.., .

A;~~ ~ ~~~~~ ·

r* e X w | * * bI

: : -F~~~~~~~~~~

:+ *: f~~~~~~~~~~~~~~

t I I 4 -
:[

i :

I .

. . .

I

. .I -

-

I . .

.. .

;-
. I

IV, DEFICIENCIES AND PROBLEMS

OF EXISTING LANGUAGES

This section summarizes some of the major deficiencies of the languages
studied. Section II contains additional discussions relative to the specific

languages.

The most common complaint about any TOL is that it is too. difficult to

learn to read and understand. This is usually brought about by the use of
mnemonics, fixed fields to distinquish parameters, etc. and by the use of

terms that the language designers erroneously considered to be generally

understood.

The facilities of the language, such as declarations, specifications, and

definitions, can usually be used by the writer to simplify his writing task

at the expense of readability. Since these same facilities can be used to

enhance readability (and sometimes are so used) the result becomes more a

function of the writer's motivation than of language definitions and rules.

Some tendency to overwork DEFINE capabilities has been noted in ATLAS test

procedures.

The absence of arithmetic capabilities has been noted for several of the

languages. It is possibly true that few system level test procedures would

require the capability, and also possible that vehicle test philosophies,
and organizational charters might influence the language definitions in this

area.

The absence of digital data transfer and computer intercommunications

capability might be due tQ the fact that the user is programmer-oriented

and the use of lower-level languages and codes is not so much a problem.
Also, the language designer may find it particularly difficult to adequately

provide the necessary terminology.

Inconsistency of rules is a problem mentioned for some languages, but

does not seem to be widespread; It is suspected that this type of problem

is a result of "minimum-impact" type of change decisions after a language

has been implemented.

53

I -

- 1 .-

54

: I .

I . ..

.I d

pRECEDING PAGE BLANK NOT FILRFoj)

V. SAFEGUARDS AND CHECKING PROVISIONS

Ideally, the design of a Test Oriented Language should provide limited
entries and few rules to be followed to insure a minimum of human errors.
With few entries and few rules, program errors can be easily detected and
corrections to the program made. Simple form and text would provide for
manual checking to be accomplished. However, safeguards to the system-
under-test require knowledge of the checkout system and the unit under test.
As the program length increases, (the number of operations to be performed
and the number of program statements increase) the building in'of safeguards
and the provisions for checking become difficult, if not impossible.

The language may provide for restricting the number of consoles which
may interact with the program and thereby prevent an inadvertent action '",
from a non-allowed console. A specific subsystem under test will have a
well defined command interface, and any required stimuli (analog or discrete)
may be identified in the preamble. If, during the procedure portion of the
program, an illegal command function was issued, the compiler would not accept
the command, and the error would appear on the listing. Several languages
provide this capability by listing allowable command functions.

The language should have a capability for establishing a course of
action in the event a problem is encountered during the run of a program.
A problem that is potentially hazardous or one left unattended, could
cause degradation of the test article. A backout sequence or a shutdown
sequence should be provided and the test console operator informed of the
event and action being taken. In some languages this capability was implicit.
In other languages, where a definite operator did not exist, subroutines
could be established to provide this capability.

Provisions should be made in the test language for informing the test
console operator of marginal conditionsaphalting the program at a convenient
step, and allowing the test console operator to terminate or continue with
another sequence, dependent upon the information presented onthis display.

The more flexible the program input format and the greater the number of
rules, the more likely human error will result. Including safeguards and
checking provisions within the language appears to offer a limited capability
due to the relationship which exists between the test article, the checkout
system, the language and the human involved in the writing the program. The
majority of the checking and safeguards must reside in the compiler for format
errors and illegal operations and in the operating executive for protection
of the system under test.

55

V

* : i

56

I

. I

I ·

; ·

, ' . * . . I

I . , . .

I

VIo PROGRAMMING AND READING AIDS

In almost every instance, the extensive use of a programming language
has resulted in the generation of specific writing aids. Not so common,
however, is the origination of reading aids. This is considered unfttuniatQ
anote thorea ar g.nerally ma-ay times as many readers as writers, and
decisions to automate testing and implement languages are more commonly
made by readers.

One conclusion of this study task is that the greatest possible aid,
once the language has been defined, is a' good user's manual with clear and
concise rules and explanations using terminology that is readily under-
standable by engineers. It is unfortunately true that a good TOL can be
defeated because concepts used in defining and explaining it are totally
new and difficult for a potential user. In some cases, simply the organi-
zation of a manual may be a hurdle. Language specifications often utilize
terms, conventions, and concepts which make it unsuitable for use as a
user's manual. In such cases, a separate manual should be provided.
Examples, syntax diagrams, tabulation of rules, explanations of each
form and option, and a glossary of terms and primitives should be included.

Probably the most common writing aid with fixed format languages is
the coding form. In some cases, such as ATOLL, such a form is really
mandatory. Unfortunately, the reader with a print-out of the test program
has no such assistance. In the case of ATOLL-II and MOLTOL, the fixed
format fields can be respecified by the user, which might really complicate
the problem for readers.

Another common aid is a listing and brief explanation pamphlet of
key terms and concepts.

A reading aid in the ACE-S/C ADAP inplementation provides for the
compiler to print out, in pre-stored message form, an explanation of
the actions directed by the ADAP "statement" or code.

In order to decrease the writing time for some languages, many words
have standard (primitive) abbreviations that are recognized by the compiler
or translator as identical to the unabbreviated words. When this is the
case, as it is with CTL and VTL, the compiler may use the full word in
print-outs and thereby restore readability.

The implementation of the compiler to check source language programs
and provide output messages (perhaps codes) that enable the source code
writer to rapidly pinpoint errors is considered a necessity.

Perhaps the most promising aid to a writer is an interactive system

which allows the writer to construct statements and programs by yes/no,
multiple choice, and fill-in-the-blanks answers as directed or requested
by a display. The TOOL system has such a provision. It is described here

as an illustration of the concept.

57

TOOL Interactive Programming Aid

The TOOL system is a highly interactive system providing the user,
in this case a test engineer or astronaut, with complete instructions
on the use of the system. Messages to the ouer appean in three fairmat
status indicator lights, variable messages output on a CRT-like plasma
display, and fixed messages placed on microfilm and automatically dis-
played as required.

The lights generally indicate the present status of the system in
response to operator pushbuttom activity. The variable messages are
displayed in response to the operator's action of typing in language
statements or in response to review requests. Error messages and the
current language statement are displayed. The fixed messages are displayed
to guide the user in the proper use of the system and to instruct the
user in the syntax and semantics of the test language itself.

A generalized example of the operation of the TOOL system will
serve to clarify the preceding ideas. Consider the case where a test
engineer knows the sequence of steps to accomplish a desired test in
a conceptual form but has no experience in using TOOL. He sits at the
OCS console and pushes the "select sequence" pushbuttom. The select
light is turned on anda microfilm frame is displayed asking the user to
type in a name for his test and explaining how this is done. Upon entry
of the name, a fixed message informs the user that the name he has used
is not already taken and what he must enter next. The plasma screen
displays the name.

The user continues to type in the statements required to establish
priority, protection, and password requirements for the test. The information
is build up by the user as explained by the microfilm frames and appears on
the plasma screen.

At the completion of this operation, a microfilm frame displaying the
allowable choice of primitives is displayed. The user selects one, and the
name of the primitive appears on the plasma. At the same time the infor-
mation concerning the first modifier required appears on the microfilm
display. The user responds accordingly and continues on in response to
other microfilm frames until he completes a statement in the language. The
statement is build up on the plasma display during this process.

When the statement is completed, the microfilm frame
choice of language primitives available appears again. A
constructed as above and this process continues until the
a complete test.

displaying the
new statement is
user has created

A microfilm frame then appears giving the user instructions and options
as to the proper disposal of the test he has just written. Should he desire
to review his test he may do so, looking at each statement in total, or
at each modifier in order. Information with respect to altering or adding
to his statements appears during this review cycle.

58

TOOL Interactive Programming Aid (Cont)

When the user has completed the review and/or modification of his
test; a microfilm frame again appears giving him instructions as to the
'isposal of his test. He may choose to save it for future use,: exeute

it, or discard it. Propor disposal of the test is selected, completing
the process of creating an executable test using the TOOL system.

.. , ., X , I .

"S.I

.~~~~I I

.I

I

. . I

59

. . I

I.

· · ·~~~~~~~~~~~~~~~

:j

PRECEDING PAGE BLANK NOT OME

VII. CONCLUSIONS

This study task has investigated both the languages and some of
thlVr applications and usage environments. Those that have been applied
have indeed aidad in apoomplishing automation by aiding the communications
problem. All could be improved.

It is interesting to note that practically all Test Oriented Languages
(TOL's) established the same objectives to direct the design of a language
useful in accomplishing automatic checkout tasks. This is not incongruous
as the requirements which originated the need for a TOL were basic to all
automatic checkout systems: time, schedule, cost, communication. The test
procedure writer was not intimately familiar with the computer or automation
techniques; the programmer was not familiar with the engineering terms used in s'.'

testing and had no knowledge of the vehicle to be tested and little inclination '

to learn. On the other hand, the test engineer was completely swamped with the
requirements of his own task and felt put-upon by having to learn how to fill
out the forms necessary to provide test data to the programmers. Communication
between these two worlds was often a real obstacle.

It was logical to expect that similar testing groups throughout the
country would independently assess the problems of automatic checkout and
immediately determine similar methods for improving communications, providing
for accomplishing many tasks with one by specifying the requirements for a
TOL, and reducing schedule and cost impacts.

However, few TOL's have been able to accomplish all of these objectives.
No doubt, compromise has affected the end result. Having a specific test
article in mind which was well developed and test equipment available
undoubtedly affected the resulting TOL. In all examples studied, with one
exception, this has been the case.

A common tendency with all of the TOL's studied (perhaps ATLAS excepted)
is for the language to be writer oriented. The common reader oriented
objectives seem to be subverted by the writer's natural desire to reduce
the number of characters to be written on the coding form. This results
in abbreviations, mnemonics, fixed formats, unnatural (but shorter) word 7sage,
and other forms of coding that are non-English like and require study by
engineers who should be able to understand the test programs but don't really
have the time. The writer is generally supported by the compiler designer
because of the simplifications possible in recognizing and analyzing source
language primitives and statements. Since the writer is frequently dedicated
full-time to the task, the time to learn the language is not of major significance.
He is also more apt to be involved in the language definition.

The CLASP language, as presently defined, is not suitable for direct use
in a test-oriented environment, although some of its features in'the non-test-
oriented terms are as suitable as those of most TOL's.

61

VII. CONCLUSIONS (Cont)

None of the TOLs considered in this study would fully satisfy the
broad test-oriented applications area as envisioned by the authors. Work
would need to be done to further the goal of test system independence of
the languages other than ATLAS. ATLAS would need additions for system-
oriented functions, and probably deletions in detailed specifications areas.

It is believed that almost every desirable feature of a new language
is provided by one or more of the languages studied. The next phase of
the study will concentrate on the identification and justification of these
desirable features.

., -4.

62

a

.,

:;·

.. , ,i .

I

. .

. .

VIII DEFINITIONS

Assembler

Asynchronous

Attribute

Compiler

A program that prepares a machine language program from a
source program which consists of symbolic notation for both
operation codes and addresses in a one-to-one relationship
with machine language.

Occurring without a regular time relationship. The occurrence
of an asynchronous event is unpredictable with respect to
instruction sequence.

A characteristic attached to a data item.

A program that prepares
source language program
structure of the source
one machine instruction
or both,

,o

a machine language program from a
by making use of the overall logic
program, or generating more than
for each source language statement,

Compiler
Directives

Concurrent
Execution ,

Cuing

Information supplied to a compiler to provide assistance in
translation of a source program which does not result in
direct creation of executable code.

Execution of computer programs in a multiprogramming mode.

The assistance provided a program writer by messages auto-
.., . matically generated by a computer in an interactive environment,

Declarative
Statement..

Delimiter

Function

A special case of compiler directive which provides information
to the compilter concerning the data elements of a program.

A character (or characters) that categorizes, separates and/or
organizes items of data or language statements.

A special case of a subroutine with a single output which can
be used within expressions just as a number or variable may
be'used.

63

t

:.... . '.,

. I
i

i

I

I

II

i

i

Global Scope

Higher Order
Language

Identifier

Imperative
Statement

Interactive

Interpreter

Literal

I cal Scope

Machine Language

That scope of a variable which specifies that the variable
has the same meaning for each use of the variable throughout
a computer program and all its subunits.

A language which enables the user to write programs for

a computer without the need for detailed knowledge of the
actual workings of the computer. Generally requires signifi-
cantly fewer statements than a lower order language.

A character or set of characters whose purpose is to identify,
indicate, label or name a body of data, such as a procedure,
function or variable. It is assigned, determined by the
programmer rather than the language: contrasts with primitive.

The language statements that specify executable actions to be
performed by the programmed system or change the sequence of
such actions.

Pertaining to a system in which a user can actively communicate
with a computer while creating and/or executing programs.

A program which executes a source program on a unit-by-unit
basis. In the OCS application, a program that takes the data
output from a translator, which represents source program
statements, and passes it to appropriate routines for execution.

A string of characters which represents itself rather than the
location of something else.

That scope of a variable which specified that the variable have
the same meaning for use only within a particular subunit of a
computer program and is undefined for any references outside
of that subunit.

A language that is used directly by a machine. It consists of
the actual binary bits which are interpreted by the computer
hardware to control instruction execution.

64

lI

Macro Capability

Multiprogramming

Optimization

Primitive

Problem Oriented
Language

Procedure Oriented
Language

Relational

Relocation

Scope

Self-Extension

A language capability that allows a user to specify a number
of language statements via the use of a single language
aratement. The single language statement is, in effect, a
new primitive of the language.

Pertaining to the interleaved execution of two or more programs
by a computer.

Refers to techniques for the generation of space or time
efficient machine code output from compilers.

t4

The set of basic elements of a language as opposed to user
defined identifiers. Primitives consist of graphic operators,
those characters which have a defined semantic meaning as an
operator; keywords, those words which have a fixed meaning in
the language; and punctuation characters which serve as delimiters.

A programming language designed for the convenient expression
of a given class of problems.

A programming language designed for the convenient expression
of procedures used in the solution of a wide class of problems.

Pertaining to the relationships between quantities, i.e.,
equal to, greater than, less than,etc. Sometimes called
Boolean Relational because of true or false type of results.

The process of moving a program from one location in storage to
another and adjusting the necessary address references so that
the program can be executed in its new location.

Pertains to that portion of a computer program throughout which
a variable has meaning. See global scope and local scope.

That capability of a language which allows the user to define
new primitives for the language. Most commonly represented
by a macro and a function capability.

65

Semantics

Special Purpose
Language

Source Language

Subset

Syntax

Target Computer

Translator

: .. ,! I '

The relationships between symbols and their meanings.

A language designed to satisfy a single objective. One
such objective is the solution of problems in a particular
application area.

A language used to write computer programs for input to
a given translation process.

A language which contains some of the features of another
language but not all the features and/or contains restric-
tions not present in the original language.

The rules covering the structure of expressions in a language.

The computer for which executable machine instructions are
produced by a compiler and not necessarily the same computer
utilized by the compiler.

A program that converts source language statements
another form or language for further processing.

into

66

:

1

IT. BIBLIOGRAPHY

1) Programming Languages: History and Fundamentals, Jean E. Sammet,
Prentice-iiall Inc., Englewood Cliffs, N. Y., 1969, Chapters 1, 2 and 3.

2) Flight Computer and Languaga Prooogaor Study, R. J. kubey,' W. 0. Nielsen,
and L. Bentley, July 1969, Contract No. NAS 12-2005, NASA, Prepared by
Logicon, Inc.

3) Spaceborne Software Systems Study, Technical Documentation Report No.
SSD-TR-67-11; Vol. 1, Summary; Vo. 2; Survey; Analysis and Recommendations;
and Vol. 3, Recommendation for a Common Space Programming Language.

4) Space Programming Language/Mark II Programmer's Manual, 20 February 1970,
SAMSO TR 69-421, Developed by System Development Corporation for the
Air Force.

5) Design of an Onboard Checkout System, Final Report, Volume II - Technical
Results, NAS 9-4899, MCR-66-12, March 1966.

6) Prototype Digital Test Set for the Checkout Systems Experimental Facility,
Operations/Maintenance Manual, HAS 9-6630, MCR-67-260, July 1967.

7) Flight Packaged Onboard Checkout System Development Unit, Operation and
Maintenance Manual, NAS 9-8000, MCR-69-399 (Rev. 1), November 1969.

8) Flight Packaged Onboard Checkout Systems Development Unit, Software
Documentation, Overall Specification - Level 2, TOOL - Test Oriented
Onboard Language System, NAS 9-8000, MCR-69-192 (Rev. 2), March 1970.

9) ATLASS - "Abbreviated Test Language for Avionics Systems," ARINC
Specification 416-1, 1 June 1969, Aeronautical Radio, Inc., 2551 Riva
Road, Annapolis, Maryland 21401.

10) ATOLL - "Acceptance Test or Launch Language," Appendix A, Specifications
of the Operating System for the Saturn V Launch Computer Complex, Vol. II,
IBM No. 66-232-0001, NASA MSFC.

11) MOLTOL - "MOLTOL Test Writer's Reference Manual," First and Last Version,
Friday, June 13, 1960.

12) ATLAS - A Standard Compiler Input Language for Commercial Airlines,
Thomas A. Ellison and Laurence S. O'Neill, Proceedings of the Automatic
Support Systems Symposium for Advanced Maintainability. St. Louis Section,
IEEE, November 1968.

13) ATOLL-II Language Reference Manual, by General Electric Company, Huntsville
Operation, for NASA MSFC Computation Laboratory.

14) CTL - Cage Test Language Description, Martin Marietta Corporation,
1 February 1968.

15) VTL - Viking Test Language Description, MMC Contract No. NAS1-9000,

29 December 1969.

67

BIBLIOGRAPHY (Cont)

16) ADAP - MA0201-D499, Intercommunication Subprogram Specifications, North
American Aviation Training Mhnual, ACE-S/C Programming.
General Eleetric Company, Volume 3, Computer Programming, 24 January 1969.

17) ACEP - ATM-U002-0, Automatic Sequence Execution and Processor (ASEP),
General Electric Company, Huntsville, Alabama.

18) Advanced Software System Study, Final Report, 69-811-2102, General Electric
Company Contract NASw-410 S/A No. KSC-360, December 1969.

19) Automatic Checkout in the Saturn Program, Charles O. Brooks, Jr. and
Max E. Rosenthal, NASA MSFC, from Automation in Electronics Test Equipment,
Volume III, New York University, April 1967.

I -

I~ ~ ~ .

4

68

I I

I

i.

.i

I

APPENDIX

AN ATLAS COMPILER

The Mnrtron Systems of Martin Marietta Denver Division is currently
producing an ATLAS compiler and ATLAS test procedures for airlines use.
A team of test writers who have little or no programming experience has
been recruited to provide the required procedures. A training program
has been instituted which requires a new test writer to create an ATLAS
test sequence from a sample problem which contains 80% of the typical
problems for which the ATLAS language is used. The learning curve for these
personnel varies from one week to one month, depending partially on their
background in test specifications. At the end of this time they are success-
fully producing ATLAS test procedures. i' v

Sample ATLAS test procedures have been reviewed by airlines personnel with
20 or more years experience in testing of aircraft components, but with little
or no programming experience. These procedures have been judged to be very
understandable and have been well received by the test engineers. Part of the
reason for this acceptance has been Martron's policy of keeping all procedures
simple and straightforward. Complex statement configurations possible in
ATLAS have been avoided in production of the test procedures.

Test procedures have been implemented for the checkout of both analog
and pneumatic units. The language has been capable of meeting all require-
ments in these areas. However, it appears that the language may need
expansion to better fit the requirements of airline checkout. One area of
expansion concerns better synchronization capabilities which are required
for the testing of digital and logic type units.

The Martron Systems' ATLAS compiler implements a major portion of the
ATLAS language. It is written in FORTRAN IV for use on a 360/65 computer
system with 228 K user core, (1) 2314 disk, and (1) 800 BPI 9 track tape
drive. The compiler produces object code for the Honeywell 316 computer
which is part of the Martron 1200 test equipment. The basic Martron equipment
includes the following stimulus and measurement devices.

1 - 512 pin programmable switching matrix.
1 - D-A converter, capacity + 100 volts DC at 1 amp.
1 - D-A converter, capacity + 10 volts DC at 100 ma.
3 - D-A converters, capacity + 100'VAC or + 10 VDC
2 - Digital to Synchro converters.
1 - Analog to digital converter with input conditions
1 - Synchro to digital converter.

26 - Constant voltage power supplies

The compiler is divided into five main sections (setup,pass 1, pass 2,
pass 3 and the object code lister).

69

APPENDIX

AN ATLAS COMPILER (Cont)

I. Setup

The setup module divides blank common into 100 equal units and
allocates these units to 8 separate tables, each table receiving
a percentage of the available storage.

After allocating blank common setup scans the subroutine library
files and builds an entry in the procedure reference table for
each program in the library.

After completing the procedure reference table, setup then calls
the load module of pass 3 to load each resident program and
complete linkage between resident programs.. The resident system
is then written on the output tape and becomes the real-time
monitor for the MARTRON 1200.

Pass 1

This module reads one statement at a time, and performs syntax
checking. In doing so, it translates the statement into a coded
form, which is a fixed format determined by its verb. Numbers are
replaced by literal table pointers, symbols are replaced by symbol
table pointers, and connector identifiers are replaced by interface
table pointers.

III. Pass 2

Pass 2 translates the coded verbs generated by Pass 1 into the
appropriate machine instructions, subroutine calls, and data to
perform the verbs. In doing this, counts are kept of the number
of words generated and the total size of subroutines which have
been called. When the amount of object memory available has been
exceeded, the program is segmented and an end of assembly flag is
generated.

Translation is then resumed at the point where the program was
segmented, after setting the above-mentioned counters to zero.

The result of Pass 2 is a series of relocatable object modules
which reside on intermediate disc storage.

IV, Pass 3

The relocatable object modules generated by Pass 2 are read in
and loaded into a core-image array, one at a time. After loading
a segment, the subroutines which it requires are loaded and linkage
is completed. The completed segment is then written on the output
tape.

This process is repeated for each segment of the ATLAS program.

70

APPENDIX

AN ATLAS COMPILER (Cont)

V, ObJict C47p Lister

The object code lister utilizes the output of Pass 2 to create a
listing which contains octal representations of machine code
generated, identification of subroutines called, and those statements
flagged as branch destinations.

: . :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i '.,

71

. I

I .

:;

~~~~~~~~~-.. .

I I



INPUT 
I ATLAS SEQUENCE I

PASS 1
_ I 
SYNTAX CHECKING,
EDITING. (FILTERS &
PASSES REQUIRED DATA

PASS 3

CONSTRUCTS
LOADABLE FILE BY-
MAKING PASS 2
OUTPUT ABSOLUTE
& ADDING ROUTINES
FROM LIBRARY
REQUIRED OF EACH
SEGMENT

OUTPUT
HONEYWELL EXECUTABLE
LOADER & SEQUENCE &
LIBRARY ROUTINES AS
REQUIRED BY EACH
SEGMENT

V\ 

:I/

LIBRARY

1 HONEYWELL SUPPLIED
2 MARTRON SUPPLIED

72

l

, 2
IPAS S 2.~~~~:
CONSTRUCTS
RELOCATABLE HONEY-
WELL MACHINE CODE
CALLS TO MARTIN &
HONEYWELL ROUTINES
AND LINKAGE TABLES
TO LOADER.

------4r-

- - , I

I

e ..

.-


